PULLBACK ATTRACTORS FOR DIFFERENTIAL EQUATIONS WITH MULTIPLE VARIABLE DELAYS IN LIPSCHITZ NONLINEARITIES
نویسندگان
چکیده
منابع مشابه
Attractors for Differential Equations with Variable Delays
The theory of global attractors for autonomous systems as developed by Hale in [7] owes much to examples arising in the study of retarded functional differential equations [8] (for slightly different approaches see Babin and Vishik [1], Ladyzhenskaya [13], or Temam [16]). Although the classical theory can be extended in a relatively straightforward manner to deal with time-periodic equations, g...
متن کاملPullback Attractors for Nonautonomous 2D-Navier-Stokes Models with Variable Delays
and Applied Analysis 3 Theorem 4 (see [21, 22]). Let X,Y be two Banach spaces satisfy the previous assumptions, and let {U(t, τ)} be amultivalued process onX andY, respectively. Assume that {U(t, τ)} is upper semicontinuous or weak upper semicontinuous on Y. If for fixed t ⩾ τ, τ ∈ R, U(t, τ) maps compact subsets of X into bounded subsets ofP(X), then U(t, τ) is norm-to-weak upper semicontinuou...
متن کاملPullback attractors for three-dimensional Navier-Stokes-Voigt equations with delays
*Correspondence: [email protected] 2Department of Applied Mathematics, Donghua University, Shanghai, 201620, P.R. China Full list of author information is available at the end of the article Abstract Our aim in this paper is to study the existence of pullback attractors for the 3D Navier-Stokes-Voigt equations with delays. The forcing term g(t,u(t – ρ(t))) containing the delay is sub-linea...
متن کاملPullback attractors of nonautonomous reaction–diffusion equations
In this paper, firstly we introduce the concept of norm-to-weak continuous cocycle in Banach space and give a technical method to verify this kind of continuity, then we obtain some abstract results for the existence of pullback attractors about this kind of cocycle, using the measure of noncompactness. As an application, we prove the existence of pullback attractors in H 1 0 of the cocycle ass...
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2013
ISSN: 0218-1274,1793-6551
DOI: 10.1142/s0218127413501873